Microviscometry reveals reduced blood viscosity and altered shear rate and shear stress profiles in microvessels after hemodilution.

نویسندگان

  • David S Long
  • Michael L Smith
  • Axel R Pries
  • Klaus Ley
  • Edward R Damiano
چکیده

We show that many salient hemodynamic flow properties, which have been difficult or impossible to assess in microvessels in vivo, can be estimated by using microviscometry and fluorescent microparticle image velocimetry in microvessels >20 microm in diameter. Radial distributions in blood viscosity, shear stress, and shear rate are obtained and used to predict axial pressure gradient, apparent viscosity, and endothelial-cell surface-layer thickness in vivo. Based solely on microparticle image velocimetry data, which are readily obtainable during the course of most intravital microscopy protocols from systemically injected particle tracers, we show that the microviscometric method consistently predicted a reduction in local and apparent blood viscosity after isovolemic hemodilution. Among its clinical applications, hemodilution is a procedure that is used to treat various pathologies that require reduction in peripheral vascular-flow resistance. Our results are directly relevant in this context because they suggest that the fractional decrease in systemic hematocrit is approximately 25-35% greater than the accompanying fractional decrease in microvascular-flow resistance in vivo. In terms of its fundamental usefulness, the microviscometric method provides a comprehensive quantitative analysis of microvascular hemodynamics that has applications in broad areas of medicine and physiology and is particularly relevant to quantitative studies of angiogenesis, tumor growth, leukocyte adhesion, vascular-flow resistance, tissue perfusion, and endothelial-cell mechanotransduction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corrections and Retraction

BIOPHYSICS. For the article ‘‘Microviscometry reveals reduced blood viscosity and altered shear rate and shear stress profiles in microvessels after hemodilution,’’ by David S. Long, Michael L. Smith, Axel R. Pries, Klaus Ley, and Edward R. Damiano, which appeared in issue 27, July 6, 2004, of Proc. Natl. Acad. Sci. USA (101, 10060–10065; first published June 25, 2004; 10.1073 pnas.0402937101),...

متن کامل

PEG-albumin supraplasma expansion is due to increased vessel wall shear stress induced by blood viscosity shear thinning.

We studied the extreme hemodilution to a hematocrit of 11% induced by three plasma expanders: polyethylene glycol (PEG)-conjugated albumin (PEG-Alb), 6% 70-kDa dextran, and 6% 500-kDa dextran. The experimental component of our study relied on microelectrodes and cardiac output to measure both the rheological properties of plasma-expander blood mixtures and nitric oxide (NO) bioavailability in v...

متن کامل

Plasma viscosity regulates capillary perfusion during extreme hemodilution in hamster skinfold model.

Effect of increasing blood viscosity during extreme hemodilution on capillary perfusion and tissue oxygenation was investigated in the awake hamster skinfold model. Two isovolemic hemodilution steps were performed with 6% Dextran 70 [molecular weight (MW) = 70,000] until systemic hematocrit (Hct) was reduced by 65%. A third step reduced Hct by 75% and was performed with the same solution [low v...

متن کامل

Blood viscosity maintains microvascular conditions during normovolemic anemia independent of blood oxygen-carrying capacity.

Responses to exchange transfusion with red blood cells (RBCs) containing methemoglobin (MetRBC) were studied in an acute isovolemic hemodiluted hamster window chamber model to determine whether oxygen content participates in the regulation of systemic and microvascular conditions during extreme hemodilution. Two isovolemic hemodilution steps were performed with 6% dextran 70 kDa (Dex70) until s...

متن کامل

Non-Newtonian flow of blood in arterioles: consequences for wall shear stress measurements.

OBJECTIVE Our primary goal is to investigate the effects of non-Newtonian blood properties on wall shear stress in microvessels. The secondary goal is to derive a correction factor for the Poiseuille-law-based indirect measurements of wall shear stress. METHODS The flow is assumed to exhibit two distinct, immiscible and homogeneous fluid layers: an inner region densely packed with RBCs, and a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 27  شماره 

صفحات  -

تاریخ انتشار 2004